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Glossary

amino acid molecules that combine to form proteins, containing both an amino and a carboxyl
group 14, 15

peptide a compound consisting of two or more amino acids linked in a chain, the carboxyl group
of each acid being joined to the amino group of the next 11, 14, 15

residue a single unit that makes up a polymer, such as an amino acid in a polypeptide chain 8,
11, 14

transformer a type of neural network architecture used to solve the problem of transduction
or transformation of input sequences into output sequences in deep learning applications
using self-attention 8, 10, 11, 16
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Abbreviations

ALBERT A Lite BERT 10

BERT Bidirectional Encoder Representations from Transformers 10
BLAST Basic Local Alignment Search Tool 10

BLOSUM BLOcks SUbstitution Matrix 10
CDD Conserved Domain Database 14
ENNA Evolutionary Neural Network Algorithm 15

LLM Large Language Models 11, 16

LoRA Low-Rank Adaptation 11, 19

MSA Multiple Sequence Alignments 14, 16, 19
NLP Natural Language Processing 5, 8, 13, 19
RoBERTa Robustly Optimized BERT 10

T5 Text-To-Text Transfer Transformer 10

Gavigan, Riley
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Structured Abstract

Context and motivation

The E-score protein alignment scoring method (Ashrafzadeh et al., ) outperforms state-of-
the-art methods, supported by comparing ProtT5 (Elnaggar et al., ) E-score results with
BLOSUM45 (Henikoff & Henikoff, ).

This research aimed to understand E-score results, building upon the observation that mean
cosine similarity results between two embeddings are not evenly distributed.

By understanding the underlying causes of the observed results, we can improve the E-score
method. Insights can be used to fine-tune the transformer models (Elnaggar et al., ; Rives
et al., ) and performance of embeddings.

Research questions

* What properties of embeddings produce better cosine similarity results?
* Why do cosine similarity results primarily fall within a positive range?

* How can models be fine-tuned to produce better embeddings?

Principal ideas
Positive cosine similarity results imply the produced embeddings are mostly similar. Comparing

different embedding types provides insight into their distributions. Through these comparisons,
conclusions about properties that improve E-score results were drawn.

Research methodology

This research is a data science investigation to obtain insight about the embeddings and cosine
similarity results in the E-score method.

Anticipated results
This study primarily aimed to obtain insight and knowledge for the E-score method, specifically:
* Knowledge about the distributions of different embedding types

* Knowledge about the cosine similarity between embeddings

* Insight to fine-tune and improve models
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Novelty
By building upon a novel method for scoring protein alignments using cosine similarity (Ashrafzadeh

et al., ), novel conclusions about embeddings and cosine similarity were made, leading to
further research that can improve embeddings and models.

Impact
Improvements in transformer models for the E-score alignment scoring method can be made

through the insight this research found. Improvements may also be applicable to Natural Lan-
guage Processing (NLP) Models such as TS (Raffel et al., ).

Progress and completed work
Insight into properties behind embedding type distributions was obtained. From these properties,

cosine similarity results were explained. These properties were explained through conducted
research and simulation in combination with insight from biochemical background research.

Limitations

No limitations are known to exist in this research.
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Introduction

Proteins are one of the four molecules of life. Finding similarities among protein sequences is
essential in identifying protein structure and function. This is done by computing alignments
between sequences.

The E-score method is a method computes alignments between sequences using contextual

embeddings produced by transformer models (Ashrafzadeh et al., ). This method uses sev-
eral different transformer models based off of NLP models (Devlin et al., ; Lan et al., ;
Liu et al., ; Raffel et al., ; Z.. Yang et al., ).

These transformer models produce embeddings when provided protein sequences. Under-
standing the values and distributions of these embeddings between each model is one focus of
this research (O1).

E-score uses cosine similarity to compute similarity between pairs of embeddings for scoring
alignments. This research analyzes the distributions of observed cosine similarity results for
natural and random protein sequences (O2, O3).

Combining embedding distribution and cosine similarity results with biochemical under-
standings of proteins is used to draw conclusions about model performance and E-score results.
Specifically, explanations about why some models outperform other models are derived (O1,
02).

Using inference about the proposed factors contributing to E-score performance, I describe
the procedure and techniques for fine-tuning ProtT5 to produce better embeddings for the E-score
method (O4).

Significant results from this research include:

* Significant positive correlation between higher embedding value variance and improved
E-score performance for a given model.

* Significant positive correlation between average cosine similarity results approaching 0
and improved E-score performance for a given model.

Novel implications about model flexibility and fine-tuning models to better adapt to the fre-

quency of residues (or words in NLP) provide significant insight into improving performance of
different models for not only E-score, but for any method using transformers.

1.1 Report structure

Chapter 2 provides a reader with background on important concepts and details discussed later
in the thesis. Chapter 3 outlines the objectives of the research. Chapter 4 outlines the materials
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and methods used in the research conducted on the E-score method. Chapter 5 provides the
results from analysis performed in the data science investigation. Chapter 6 discusses the results,
their implications, limitations, and generalizations. Chapter 7 concludes the study by addressing
the research questions outlined in the thesis proposal, and discusses impact and novelty of the
results. Chapter 8 discusses potential future work and novel lessons learned from this research.
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Background and Related Work

2.1 Natural Language Processing

Natural Language Processing is the branch of artificial intelligence that deals with computers
understanding text and spoken words (Khurana et al., ). One significant advancement was
the introduction of transformers (Vaswani et al., ). Before Transformers, methods such as
word2vec (Mikolov et al., ) and GloVe (Pennington et al., ) generated contextually-
independent embedding vectors for words. Transformer models introduced contextual embed-
dings generated through self-attention (Vaswani et al., ).

Information about each model serving as foundation for E-score models:

» Text-To-Text Transfer Transformer (T5): Text-to-text approach. Input and output are both
text strings. Relies of transfer learning for downstream fine-tuning (Raffel et al., ).
GLUE benchmark average: 88.7

* Bidirectional Encoder Representations from Transformers (BERT): Bidirectional training
using masked language modeling for a deeper sense of context from sequential reading
(Devlin et al., ).

* A Lite BERT (ALBERT): A lightweight version of BERT that uses parameter-reduction
techniques to reduce training time and memory limitations (Lan et al., ). GLUE
benchmark average: 87.3

* Robustly Optimized BERT (RoBERTa): A stronger version of BERT that was trained
longer; removed next-sentence pretraining; and trained with larger mini-batches and learn-

ing rates (Liu et al., ). GLUE benchmark average: 86.4

* XLNet: Designed to overcome the pretrain-finetune discrepency BERT suffered from, out-
performing BERT significantly on 20 tasks (Z. Yang et al., ). GLUE benchmark av-
erage: 87.5

2.2 E-score

Finding similarities among protein sequences is essential in identifying protein structure and
function. This is done by computing alignments between sequences. The Basic Local Alignment
Search Tool (BLAST) program! is one of the most widely used tools in science (Altschul et al.,
). An essential part of BLAST is the scoring function; the most widely used functions are
provided by the BLOcks SUbstitution Matrix (BLOSUM) (Henikoff and Henikoff, ).

"Exceeds 108,000 citations, according to Google Scholar.
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The E-score protein alignment scoring method (Ashrafzadeh et al., ) is another one of
these scoring functions that outperforms state-of-the-art methods. E-score’s improved perfor-
mance was supported by comparing ProtT5 (Elnaggar et al., ) results with BLOSUM45
(Ashrafzadeh et al., ; Henikoff and Henikoff, ). E-score uses transformer models to
produce contextual embeddings for the residues in peptide sequences. Model information is
available in Table 5.3.

Contextual embeddings describe the position of a residue in a high-dimensional vector space.
Contextual embeddings have many important applications in biology, including structure predic-

tion (Jumper et al., ; Senior et al., ; J. Yang et al., ) and function prediction (Glig-
orijevié et al., ; Kulmanov and Hoehndorf, ; Lai and Xu, ). The E-score alignment
method is another application for these embeddings, outperforming the state-of-the-art methods
(Ashrafzadeh et al., ) by completely changing the way alignments are computed.

The embedding vector produced for each protein residue varies based on the model. Em-
bedding dimensions and pre-training dataset are outlined in the research code repository. The
dimensionality of the embedding vectors represents the number of features encoded in the em-
bedding, and is a fixed value for each model.

Calculating the cosine similarity between two vectors A = (A;)i=1., and B = (B;)i=1.x:
Hﬁ‘ﬁ. E-score is calculated by taking the cosine similarity between the embedding vectors
from two residues.

In calculating sequence alignment using the E-score method, the cosine similarity results

were mostly mostly less than Z. ProtT5 had the best performance (Ashrafzadeh et al., ).

2.3 Analysis and Research Gap

There is no research analyzing results and properties contributing to improved embedding per-
formance for comparable models to the E-score method using protein transformers. Fine-tuning
Large Language Models (LLM) is a powerful technique to leverage pre-trained models and adapt
them to perform better at a specific task or tasks. Fine-tuning can be improved upon using in-
sights such as those taken from this research. The purpose of fine-tuning is to avoid the need
to pre-train a model from scratch for a task; instead relying on powerful pre-trained models and
modifying them to better suit the task.

Supervised learning involves providing the model with a labeled dataset, and the model will
learn to map the input to the output by minimizing its loss function (Mohri et al., ).
Reinforcement learning involves providing a reward signal to the model when it generates a
desired output, and the model learns to generate the desired output for a task by maximizing
the reward signal (Sutton and Barto, ). Both of these tasks can be leveraged along with
novel conclusions from this research to better fine-tune models for E-score and for other tasks
that follow similar procedures to draw unique conclusions. Fine-tuning techniques such as Low-
Rank Adaptation (LoRA), a technique that freezes the pre-trained weights and injects a trainable
rank decomposition matrix into each layer of the architecture, can minimize compute intensity
of fine-tuning procedures that this research can lead to.


https://github.com/rgavigan/e-score/blob/main/README.md
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Research Objectives

O1: Understand the reasoning behind the observed distributions of different embedding
types. Explaining both individual and relative results for E-score models.

0O2: Understand what properties of embeddings help produce better cosine similarity and
alignment results.

0O3: Understand why cosine similarity results primarily fall within a positive range.

O4: Determine how models can be fine-tuned to improve E-score method results.
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Methodology

4.1 Protein composition

Proteins are not completely random in nature. By determining the frequencies of amino acids
in our dataset of protein sequences, we showcase that there is not an equal distribution of amino
acids present in nature. We also use these frequencies to perform a simulation on completely
random proteins for a given length n of a polypeptide. By simulating every combination and
calculating the cosine similarity for a given length of proteins using only the frequency of amino
acids as a constraint, we are able to outline one factor contributing to observed cosine similarity
results (O1).

4.2 Embeddings and cosine similarity

By applying the above analysis and further supporting it with more properties of proteins such as
their secondary structures, we analyze and explain why cosine similarity results are mostly posi-
tive (02, O3). Similar to how in NLP we would observe documents having similar sentences (ex:
e-mails always contain a selection of entry and closing statements such as "Good morning” and
”Warm regards”), the rules that proteins follow would result in similarities between sequences.

To support findings from embedding vector and cosine similarity analysis, background knowl-
edge about the properties of different models is used to explain the performance differences (O1).
Table 5.3 highlights some key properties about the models available in the E-score method.

Results from the papers proposing each model are used to support findings in Chapter 5
(O4). Details regarding ProtTrans models, ESM-1b, and ESM2 are found in their respective
papers (Elnaggar et al., ; Elnaggar et al., ; Lin et al., ; Rao et al., ; Rives
et al., ).

Empirical procedures involve obtaining and collecting data for natural and random protein
sequences, using them as input for each model, and collecting information about embedding
vector distributions and cosine similarity between embedding vectors for every generated em-
bedding. Findings are validated through t-tests to determine statistical significance of results for
embeddings and cosine similarity.

Source code for these empirical procedures used to generate results is located on GitHub.
Empirical procedures use the following: embedding generation for selected sequences; normal-
ization of embedding values for comparison; averaging embedding values for different models
for both random and non-random sequences; and averaging cosine similarity between embed-
dings for both random and non-random sequences.


https://github.com/rgavigan/e-score/blob/main/src/e-score.ipynb
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Results

5.1 Data

Data was obtained through the Conserved Domain Database (CDD) for different Multiple Se-
quence Alignmentss (MSAs) from the list of 49 selected in the E-score paper (Ashrafzadeh et
al., ; Marchler-Bauer et al., ). Selected MSAs are found in Table 5.1 and in the code
repository.

Procedure for obtaining CDD MSA data:
1. Select a source from Table 5.1.
Search for the source on the CDD website.

Click 'Representatives’ under ’Links’, send to FASTA format.

el

For reference alignments: click "Download Alignment’ instead of going to ’Representa-
tives’

Alignment pairs i, j were enumerated by iterating through each FASTA file: Vi Vj, i # j. These
pairs were used to determine embedding value distributions (O1) and cosine similarity distribu-
tions (O3) for natural proteins. Reference alignments serve as necessary data for future fine-
tuning efforts based on drawn conclusions.

Random sequence data was generated by randomly selecting residues of equal probability
with replacement for sequences of random lengths between 100 and 400. This data was used to
compare random embeddings and cosine similarity to naturally-observed results (O1).

5.2 Protein composition

Sequence similarity is essential in sequence analysis within bioinformatics (Ofer et al., ).
Peptide sequence alignment is the most complex case, with a language of 20 common amino
acids forming a theoretically countably infinite amount of unique peptide sequences shown in
Equation 5.1 by taking the n-ary Cartesian product.

Theoretical Limit = [ [ |A] = [[20=20x20x ... (5.1)
k=1 k=1

Observed sequences in living organisms are constrained by biological, genetic, and functional
factors. For example, the average eukaryotic protein size is 353 &+ 62.5 residues (Nevers et al.,

).


https://github.com/rgavigan/e-score/tree/bf08fa86209a6ce9956d48212690b1814450e72b/data/finetuning/msa-proteins
https://github.com/rgavigan/e-score/tree/bf08fa86209a6ce9956d48212690b1814450e72b/data/finetuning/msa-proteins
https://www.ncbi.nlm.nih.gov/cdd
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Table 5.1: 10 MSAs with the most proteins from CDD used in the E-score comparison procedure

(Ashrafzadeh et al., ; Marchler-Bauer et al., ).
MSAs
Conserved Domain Source Proteins Length
CS_CSD ¢d00024 522 98
Ttm_classA_rhodopsinlike ¢d00637 405 808
FYVE _like SF ¢d00065 392 266
Mblike cd01040 384 239
SH?2 cd00173 352 214
Cl cd00029 281 99
KAZAL FS ¢d00104 273 74
Globin_sensor ¢d01068 193 223
Bbox2 cd19756 127 65
NBD _sugarkinase_HSP70_actin c¢d00012 125 1154
Databases such as UniProt (Consortium, ) and PeptideAtlas (Desiere et al., ) are

repositories filled with peptide sequences. UniProt contains over 250 million unique peptide
sequences and counting (Consortium, ).

Peptide sequences are not completely random because of the constraints imposed on them.
Similar to letters or words in a given language within natural language, the frequency of each
amino acid observed in nature is not equally distributed (Beals et al., ).

Proteins form secondary structures as part of larger tertiary and quaternary structures. The
most common of these secondary structures are ¢ helices and 8 pleated sheets (Ma et al., ).
Because of this, algorithms such as an Evolutionary Neural Network Algorithm (ENNA) are able
to distinguish natural proteins from randomly generated proteins with an accuracy of over 94%
(De Lucrezia et al., ).

The distribution of the observed amino acids in all of the protein sequences from the 10 MSAs
in Table 5.1 is shown in Table 5.2. Counts were acquired by reading FASTA file sequences for
each MSA and generating a I&TEX table containing names, frequencies, and percentages for the
20 most common amino acids.



Page 16 of 24 Gavigan, Riley

Table 5.2: Distribution of amino acids found in the 10 selected MSAs. A few occurrences of
B’ (nondeterministically either N or D) and some occurrences of X’ (undetermined or atypical
amino acid) were left out for simplicity.

Amino Acid Symbol Frequency Percent Diff From Equal P-value

Leucine L 152859  9.099 4.099 0.0e+00
Serine S 141844  8.443 3.443  0.0e+00
Alanine A 127926  7.614 2.614 0.0e+00
Glutamic Acid E 108476  6.457 1.457 0.0e+00
Valine \Y% 105408  6.274 1.274  0.0e+00
Arginine R 99687  5.934 0.934 3.2e-293
Glycine G 96906  5.768 0.768 3.6e-202
Threonine T 96702  5.756 0.756 4.1e-196
Lysine K 94251 5.610 0.610 3.6e-130
Aspartic Acid D 88980  5.296 0.296 5.2e-33

Isoleucine I 87579  5.213 0.213 5.9e-18

Proline p 86463  5.146 0.146 2.5e-09

Glutamine Q 74206  4.417 0.583 6.3e-134
Asparagine N 73490  4.374 0.626 1.3e-154
Phenylalanine F 64495  3.839 1.161 0.0e+00
Tyrosine Y 46324  2.757 2.243  0.0e+00
Histidine H 43163  2.569 2431 0.0e+00
Cysteine C 36749  2.187 2.813  0.0e+00
Methionine M 35289  2.100 2.900 0.0e+00
Tryptophan W 19243 1.145 3.855 0.0e+00

5.3 E-score model differences

The transformer models used in the E-score method (see Table ??) vary in performance (O1).
ProtT5 outperformed the 5 other models available when computing end-gap-free alignments for
six different conserved domain MSAs. ProtT5 and ESM2, the second best model, were com-
pared and it was evident that ProtT5 outperformed ESM?2 with statistically significant results
(Ashrafzadeh et al., ).

E-score’s protein transformers models have significantly different pre-training configurations
(Elnaggar et al., ; Rives et al., ), some of which are highlighted in Table 5.3 (O1).

Protein transformer model pre-training configurations significantly impact model perfor-
mance. For example, ProtT5 has 3 billion parameters compared to ProtAlbert having 224 mil-
lion. Model performance and number of parameters are highly correlated, which is supported
by the Chinchilla paper’s findings for training compute-optimal LLMs (Hoffmann et al., ).
Through the results from the comparison between models in the E-score paper (Ashrafzadeh et
al., ), it was evident that the encoder-decoder model ProtT5 outperformed both the encoder-
only models (ESM1b, ESM2, ProtBert, ProtAlbert) and the decoder-only model (XLNet).
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Table 5.3: Pre-training configuration for protein language models (Elnaggar et al., ; Rives
et al., ). UR = UniRef.
Hyperparam ProtT5 ProtBert ProtXLNet ProtAlbert ESMI1b ESM2
Dataset URS50 UR100 URI100 UR100 URS50  URS0
# of Layers 24 30 30 12 33 33
Embedding Dim 1024 1024 1024 4096 1280 1280
# of Params 3B 420M 409M 224M 650M  650M
Learning Rate 0.01 0.002 0.00001 0.002 0.0004  0.0004

5.4 Embeddings

Understanding embedding distributions is crucial in understanding cosine similarity results and
how they can be improved (02). Embedding distributions were compared for all ProtTrans
models in the E-score method for both randomly selected natural protein sequences and randomly
generated sequences. Embedding value distributions are visualized in Figure 5.1. The procedure
for obtaining average embedding values is described below:

* Obtain n sequences to provide as input to a model
* Produce and store the embedding values for all n sequences

* Normalize the embedding values, then obtain the average and standard deviation of all n
embeddings

Average of Embedding Vectors for Each Model (n = 80)
0.4
0.2

0.0

o; ;

ProtT5_Random ProtT5 ProtBert_Random ProtBert ProtAlbert_Random ProtAlbert ProtXLNet_Random ProtXLNet
lode

Figure 5.1: Average embedding values for 80 random and non-random (randomly chosen from
CDD) embeddings for all ProtTrans models. Values scaled to -1...1.
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5.5 Cosine Similarity

Cosine similarity distributions were compared for all ProtTrans models in the E-score method
for randomly selected natural protein sequences and randomly generated sequences. Cosine sim-
ilarity distributions are visualized in Figure 5.2. The procedure for determining cosine similarity
distributions is described below:

* Get embeddings for n sequences from a selected model.

« Calculate the cosine similarity between every pair i, j of embeddings, for a total of n®
cosine similarity calculations.

Average Cosine Similarity Between 40 UniProt Embeddings +- Standard Deviation

0.8

0.6

Average

0.4

0.2

I

ProtT5 ProtT5_Random ProtBERT ProtBERT_Random ProtALBERT ProtALBET_Random ProtXLNet ProtXLNet_Random
Model

Figure 5.2: Average cosine similarity between sample and random embeddings for all ProtTrans
models. P-Values are all 0.000 between any column and overall average of 0.59 (and between
any chosen comparison).
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Discussion

6.1 Implications

The results derive implications that can be used to enhance the E-score method with LoRA fine-
tuning. This is primarily applicable to ProtT5, as it is the best-performing method with pre-made
fine-tuning notebooks that can expanded upon, but is also applicable to other models. We can
fine-tune the other models to catch up to ProtT5’s performance by generating embeddings with
more variance in their average values. Additionally, we can create a custom penalty function to
punish these models for producing mostly similar cosine similarity results, bringing the average
cosine similarity result closer to 0 and closer to ProtT5’s average.

The connection between observations in nature and embedding results from models is highly
evident from this research. Most models fail to capture variance because of these laws governing
nature, which ProtT5 managed to overcome (likely only because of its size) as results in Section
5.4 outlined. AlphaFold (Jumper et al., ) is a protein structure prediction method developed
by Google DeepMind that uses protein transformers as the E-score method does. Because we are
able to predict protein structure with transformers, it is evident that primary structures, secondary
structures, structural motifs, and other properties of proteins are heavily correlated. Results from
Section 5.1 and 5.2 further support this claim and outline the importance of adapting models
to account for these rules. More efficient training strategies can be researched to improve the
performance of models despite identical size and training time (more compute-optimal).

6.2 Limitations and Generalizations

Limited compute power (GPU: RTX 4070 Super) impacted the scale of embedding distribution
and cosine similarity distribution procedures. With more compute power, these procedures could
be conducted for all 49 MSAs used in the E-score method and an equivalent number of random
sequences. This would greatly improve the validity of the results.

Results are generalizable to other systems utilizing ProtTrans, ESM-1b, and ESM2 models
(Elnaggar et al., ; Rives et al., ). Novel conclusions can be used to support fine-tuning
models for their respective use-cases. NLP use cases may repeat experimental procedures in
future research to determine word frequency (ex: the word “what” is much more common in
English than “myriad”), embedding distribution (O1), and their correlation with the results of a
respective method (such as E-score’s O3) to find parallel conclusions.
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Conclusions

This study aimed to address the limited insight into factors that contribute to better model per-
formance in the E-score alignment method (Ashrafzadeh et al., ). Objectives included un-
derstanding embedding distributions for models and for both random and non-random sequences
(01, 02); understanding cosine similarity between these embeddings(O3); and determining how
we can improve models in task performance (O4).

Key results and conclusions:

1. Proteins are not random in nature. Amino acid frequencies are not equal and vary to
form particular secondary, tertiary, and quaternary structures. The reference MSAs contain
significantly different frequencies for all 20 common amino acids (Section 5.2).

2. E-score model performance is correlated heavily with the size of a model. This is sup-
ported by ProtT5 (3 billion parameters) outperforming every other model, with ESM?2
performing second best (650 million parameters) (Section 5.3).

3. Embedding value distributions with a higher variance perform better in the E-score method.
This is supported by ProtT5 significantly outperforming all other models with a much
higher variance. For worst performing models, variance is constrained by the non-random
nature of proteins with random sequences having a significantly higher variance (Section
5.4).

4. Cosine similarity distributions are heavily correlated with model performance. ProtT5, the
best method, has an average cosine similarity close to 0. All other models over-represent
positive cosine similarity results, implying that they fail to capture variation as well as
ProtT5 (Section 5.5).



Page 21 of 24 Gavigan, Riley

Future Work and Lessons Learned

Using the ProtTrans per-protein fine-tuning notebook as a basis to fine-tune ProtT5 for the E-
score method may lead to significant performance benefits, especially if modified for other mod-
els. This requires significant modifications to the fine-tuning process:

* Fine-tune the model with the ProtT5S per-protein notebook as a basis, creating a LoRA
adapter for the E-score method.

* Modify the fine-tuning notebook to work on pairs of inputs as opposed to a singular input,
with penalties being assigned based on how far the E-score alignment score for the pair of
embeddings is from the true reference alignment.

Significant lessons learned from this research:

1. Higher variance in produced embeddings is highly correlated to improved performance,
meaning highly flexible models may be the key to improved E-score performance.

2. Average cosine similarity results closer to 0 are highly correlated with better E-score per-
formance. Models that make use of the full -1...1 cosine similarity range with better-
produced embeddings perform better than those with mostly positive results. Fine-tuning
models to reach a mean of 0O is likely to lead to better performance.

3. The rules governing protein sequences observed in the world lead to higher cosine similar-
ity results in all cases. Fine-tuning models to better capture variation while accounting for
these properties (i.e. amino acid frequency) may lead to stronger results.
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